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Abstract
We propose a new family of complex PT -symmetric extensions of the
Korteweg-de Vries equation. The deformed equations can be associated
with a sequence of non-Hermitian Hamiltonians. The first charges related
to the conservation of mass, momentum and energy are constructed. We
investigate solitary wave solutions of the equation of motion for various
boundary conditions.

PACS numbers: 03.65.−w, 02.30.Mv, 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

PT -symmetry has served as a very fruitful guiding principle to identify potentially interesting
non-Hermitian Hamiltonians, which may constitute physically relevant non-dissipative
systems. The interest in these types of configurations has started with a numerical observation
made in [1], where it was found that the Hamiltonian

H = p2 − g(iz)N+1 (1.1)

possesses a real, positive and discrete eigenvalue spectrum for integers N � 1 with coupling
constant g ∈ R

+, despite it being non-Hermitian H �= H † and unbounded from below, for
N = 4n − 1 with n ∈ N. The virtue of PT -symmetry results from the fact that whenever
the Hamiltonian and the wavefunctions are left invariant under a PT -transformation the
eigenvalues are guaranteed to be real. However, the anti-linear nature of the PT -operator
is responsible for the fact that such a guarantee cannot be provided by the PT -symmetry
of the Hamiltonian alone [2, 3]. Unlike as for linear operators, for the PT -operator its two-
dimensional representation can be realized, in which case one speaks of broken PT -symmetry.
One is then in a situation in which the corresponding wavefunctions are notPT -symmetric and
the eigenvalues occur in complex conjugate pairs. Nonetheless, even though PT -symmetry
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of the Hamiltonian cannot guarantee the reality of the spectrum, it pre-selects a subclass of
promising non-dissipative systems. For recent results and a review see for instance [4–6].

A couple of months ago Bender, Brody, Chen and Furlan [7] have applied the above
principle to identify interesting extensions of the Korteweg-de Vries (KdV) equation [8]

ut + uux + uxxx = 0. (1.2)

The scaling properties of this equation for x → αx, t → βt, u → γ u are well known, e.g. [9]

γ

β
ut +

γ 2

α
uux +

γ

α3
uxxx = 0, (1.3)

and it has been remarked already at least 30 years ago that the KdV equation remains invariant
under a PT -transformation t → −t, x → −x, see for instance p 414 in [9]. This is of course
just the particular case α = β = −γ = −1. However, this property has only been exploited in
the above-mentioned spirit in [7], where the KdV equation has been extended to the complex
domain in a PT -symmetric manner:

ut − iu(iux)
ε + uxxx = 0 ε ∈ R. (1.4)

One may think of equation (1.4) as being obtained from (1.2) by a scale invariant deformation

ux → −q̂(qux)
ε ε ∈ R, (1.5)

of the second term. When the deformation parameters scale as q → α/γ q, q̂ → γ /αq̂,
equation (1.4) has the same behaviour under scaling as (1.3) for all values of ε. The special
case q = q̂ = i yields a PT -symmetric expression for α = β = −γ = −1. Intriguingly, the
equation (1.4) were found to possess interesting solitary wave solutions and two conserved
charges were also constructed.

2. A new PT -symmetric deformation of the KdV equation

It should be mentioned that complex extensions of the KdV equation have been studied before,
see e.g. [10–12] and in passing even some special cases of equation (1.4) have been dealt with
for instance in [13]. However, only few properties have been studied for the latter and
PT -symmetry has not been adopted as a guiding principle. Motivated by the interesting
findings in [7] and the usefulness of PT -symmetric complex deformations in other contexts,
see e.g. [4–6], we extend here its application. We suggest that instead of deforming the second
term in (1.3), by the same principle one may equally well deform the last term or possibly all
terms. We shall demonstrate that the former case possesses some advantageous features when
compared with the previously outlined deformation.

Let us start by using the same PT -symmetric deformation principle

ux → −i(iux)
ε ε ∈ R (2.1)

as employed in [7], albeit now for the last term. This amounts to replacing the third derivative
as

uxxx → iε(iux)
ε−2

[
(ε − 1)u2

xx + uxuxxx

]
. (2.2)

In this way, simply applying (2.2) to (1.2), we obtain a new PT -symmetric deformation of
the KdV equation

ut + uux + iε(ε − 1)(iux)
ε−2u2

xx + ε(iux)
ε−1uxxx = 0. (2.3)

At first sight the deformation (2.3) appears to be far less appealing than the deformation (1.4).
In the latter the effect of the deformation was simply that the nonlinear term of the KdV
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equation has become somewhat more nonlinear, whereas in (2.3) we have replaced the linear
term by two highly nonlinear terms. Nonetheless, as a trade off the deformation (2.3) has
some very attractive features, which are not present in (1.4). For instance, having a physical
application in mind we expect the deformed equation to be at least Galilean invariant just like
its undeformed counterpart (1.2). This property is lost in (1.4), but instead (2.3) is Galilean
invariant, as it remains invariant under the transformation

x → x − ct, t → t, u → u + c, (2.4)

where c is the velocity of the moving reference frame. Furthermore, it was difficult to
construct conserved quantities for (1.4). Only two charges could be constructed so far and
in addition they turned out to be complicated infinite series. We shall now demonstrate that
this task is surprisingly simple for (2.3), despite its high degree of nonlinearity by relating
it to a Hamiltonian formulation, which seems also impossible for (1.4) as it appears to be a
non-Hamiltonian dynamical system.

3. PT -symmetric deformations from a Hamiltonian formalism

As we remarked, the PT -symmetry analysis, which led to (1.4), was carried out directly for
the equation of motion. Recalling that (1.1) was obtained as a deformation of the standard
harmonic oscillator and that this principle has been applied to various Hamiltonian systems,
it appears highly desirable to perform deformations for the KdV system also on the level of
a Hamiltonian. This will enable us to relate these systems to the arguments, which allow
statements about the reality of the spectrum by utilizing PT -symmetry as outlined in the
introduction. In the equation of motion this property enters more indirectly and it is less clear
which kind of conclusions can be drawn from the symmetry property.

It is well known for a long time that the KdV equation can be formulated as a Hamiltonian
system [14–17]. Thus in this spirit and in more direct analogy to the construction of (1.1), we
propose to study the new non-Hermitian Hamiltonian density

H = u3− 1

1 + ε
(iux)

ε+1 ε ∈ R. (3.1)

For ε → 1 we recover the standard Hamiltonian density for the KdV equation. Clearly H in
(3.1) isPT -symmetric, since it remains invariant under the transformation: t → −t, x → −x,

i → −i and u → u. Similarly as in the standard quantum mechanical setting, outlined in the
introduction, PT -symmetry can be utilized to ensure the reality of the energy E in any interval
[−a, a], which follows trivially with H(u(x)) = H†(u(−x))

E =
∫ a

−a

H(u(x)) dx = −
∫ −a

a

H(u(−x)) dx =
∫ a

−a

H†(u(x)) dx = E†. (3.2)

Let us now derive the corresponding equation of motion by invoking the variational
principle for the Hamiltonian H(u) = ∫

H dx

∂u

∂t
= ∂

∂x

(
δH(u)

δu

)
= ∂

∂x

(
δ
∫
H dx

δu

)
= ∂

∂x

( ∞∑
n=0

(−1)n
dn

dxn

∂H
∂unx

)
. (3.3)

Evaluating (3.3) for H in (3.1) yields

ut + (−3u2 + ε(iux)
ε−1uxx)x = 0, (3.4)

or when not written as a conservation law

ut − 6uux + iε(ε − 1)(iux)
ε−2u2

xx + ε(iux)
ε−1uxxx − κ = 0, (3.5)
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where κ is a constant. Note that (3.5) is almost (2.3), but corresponds to a deformation of the
scaled KdV equation (1.3), with α = β = 1, γ = −6 and κ = 0, which, depending on the
context, is also frequently used in the literature for convenience.

3.1. Integrals of motion and conserved quantities

Having seen how to obtain the PT -symmetrically deformed KdV equation (2.3), or more
precisely its scaled version (3.5), from a Hamiltonian principle, we shall demonstrate next that
it has further interesting properties, which are absent in the deformation (1.4). As mentioned,
for (1.4) the authors of [7] could only construct the two first conserved quantities in form
of complicated infinite sums. Here we find instead that for (3.5) these quantities can be
computed in a straightforward manner. Assuming to have a conserved quantity of the form
I(n) = ∫

T (n) dx, all we have to verify is whether its Poisson bracket with the Hamiltonian is
vanishing (see, e.g. [14]). Viewing I(n)(u) and H(u) as functionals of u we have by definition

dI(n)

dt
=

∫
δT (n)

δu

∂u

∂t
dx =

∫
δT (n)

δu

(
δH

δu

)
x

dx =: {I(n), H }. (3.6)

Let us now employ (3.6) to establish that

I(1) =
∫

u dx, I(2) =
∫

u2 dx and I(3) = H(u) (3.7)

are indeed preserved under an evolution in time. We find that these quantities are conserved
when we invoke as a standard boundary condition the non-compact or compact case for
u, ux, . . . , that is being either vanishing at infinity or periodic in space, respectively.
Depending on the chosen boundary conditions, one may specify the limits in the indefinite
integrals accordingly. This is easily seen by computing

dI(1)

dt
= {I(1), H } =

∫
(3u2 − ε(iux)

ε−1uxx)x dx = 0, (3.8)

dI(2)

dt
= {I(2), H } =

∫ (
4u3 − 2ε

1 + ε
(iux)

ε+1 − 2εu(iux)
ε−1uxx

)
x

dx = 0, (3.9)

dI(3)

dt
= {I(3), H } = −{H, I(3)} = 0. (3.10)

The last conservation law follows trivially from the anti-symmetry property of the Poisson
brackets. We can also be more explicit and compute the corresponding flux. Constructing
vanishing Poisson bracket amounts to seeking solutions of the conservation law

T (n)
t + X (n)

x = 0, (3.11)

with −X (n) being the nth flux and T (n) being the nth conserved density. Then I(n) = ∫
T (n) dx

is a conserved charge provided the appropriate boundary conditions hold. The case n = 1
corresponds to the equation of motion itself as can be read off directly from (3.4). For the
case n = 2 we may rewrite (3.9) as a conservation law in the form

(u2)t +

(
2ε

1 + ε
(iux)

ε+1 + 2εu(iux)
ε−1uxx − 4u3

)
x

= 0. (3.12)

We can also be more concrete about T (3) = H and compute the associated flux

X (3) =
(

ε2

2
− ε

)
(iux)

2ε−2u2
xx + 3

(
εuuxx − 2u2

x

)
u(iux)

ε−1 − iε(iux)
2ε−1uxxx − 9

2
u4,

(3.13)
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thus confirming (3.10). At this stage it is not clear whether there exist higher conserved
quantities. However, we suspect that similarly as for most cases of the modified KdV
equations and the generalized KdV equations only three charges exist. We recall that the
equation ut + upux + uqx = 0 is only integrable, i.e. possesses an infinite amount of conserved
quantities, for the cases q = 3, p = 1, 2; q = 1, p ∈ N and q ∈ N, p = 1 (see, e.g. [9]).

3.2. Solutions of the equations of motion

We shall now construct solutions of the equations of motion (3.5). One may expect to find a
rich variety of different types of solutions similarly as for the standard KdV equation. Over the
years several methods have been developed to find such solutions ranging from minimizing the
sum of the conserved charges [18], the inverse scattering method [19], Hirota’s bilinearization
method [20], etc. Some methods demand as a prerequisite for the model to be integrable. As
this feature is not guaranteed for the model at hand, in fact the conjecture is that the model
is not integrable, our aim is here just to obtain a first impression in order to indicate that the
above family of equations deserves further attention. Following a simple procedure which
has turned out to be useful for the standard KdV equation, we may integrate (3.5) directly by
assuming the solution to be a steady progressing wave

u(x, t) = w(kx − ωt) = v(x − ct), (3.14)

with c = ω/k. Substituting (3.14) into the equation of motion (3.5) yields after some
straightforward manipulations

v(n)
x = exp

(
iπ(4n + 3ε + 1)

2(1 + ε)

) [
ε + 1

ε

(
v3 +

c

2
v2 + κv + κ̂

)] 1
ε+1

, (3.15)

with κ̂ being an additional constant of integration and n labelling the various branches of the
function. Separating variables then yields

x − ct = exp

(
iπ(4n + ε − 1)

2(1 + ε)

) ( ε

ε + 1

) 1
ε+1

∫
dv(

v3 + c
2v2 + κv + κ̂

)1/(ε+1)
. (3.16)

Apart from computing the integral in (3.16), the main problem is here that we need to
solve the equation for v in order to obtain v(x − ct). This is only possible in very few
exceptional cases, but the knowledge of the inverse function (x − ct)(v) in some domain
will be valuable as it provides the information about the kind of general behaviour which is
possible. For convenience we choose the dispersion relation and the constants of integration
to be parameterized as

c = 4k2(2 − m), κ = 4k4(1 − m) and κ̂ = 0. (3.17)

This choice is guided by the known solutions for ε = 1 and leads naturally to three qualitatively
different cases.

3.3. Analogues of the cnoidal solution

Let us first recall how to solve equation (3.16) for the case ε = 1, which should result into an
elliptic integral as we integrate the inverse of the square root of a cubic polynomial. With the
choice of constants (3.17) we may bring (3.16) into the usual form of an elliptic integral

kx − ωt = ± k√
2

∫ w

−2k2

dt√
t3 + 2k2(2 − m)t2 + 4k4(1 − m)t

= ±
∫ φ(w)

0

dθ√
1 − m sin2 θ

,

(3.18)
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Figure 1. (x − ct) as a function of v for ε = 1, 3, 5 for some particular branches.

with φ(w) = arcsin
√

(1 + w/2k2)/m. From (3.18) we deduce therefore that w(kx − ct)

becomes the well-known cnoidal solution for the KdV equation

u(x, t) = −2k2 dn2(kx − ωt |m), (3.19)

with dn being a Jacobian elliptic function depending on the parameter m ∈ [0, 1], see e.g. [21]
for notation and properties. As (3.19) indicates for ε = 1, the cases m = 0, 1 are special in
general. For generic values of ε we evaluate (3.16) with the parameterization (3.17) to

x − ct = exp

(
iπ(4n + ε − 1)

2(1 + ε)

) (
v(1 + ε)

ε

) ε
1+ε

(
1

4k2(1 − m)

) 1
1+ε

×F1

(
ε

1 + ε
; 1

1 + ε
,

1

1 + ε
; 1 + 2ε

1 + ε
; −v

2k2(1 − m)
; −v

2k2

)
. (3.20)

Here F1 is the Appell hypergeometric function defined via a double infinite sum as

F1(α;β, β ′; γ ; x; y) :=
∞∑

m=0

∞∑
n=0

(α)n+m(β)n(β
′)m

n!m!(γ )n+m

xnym (3.21)

with (α)n := ∏n
k=1(α + k − 1). Since we cannot solve (3.20) for v let us plot (x − ct) as a

function of v and search for real solutions.
We depict our findings in figure 1. For ε = 1 we recognize the cnoidal solution (3.19).

For clarity we did not indicate the vanishing imaginary part in this case. For the other values of
ε we always find two different types of solutions. The first resembles qualitatively the cnoidal
solution and is either real for v ∈ [−1/2k2, 0] or v ∈ [0, 1/2k2]. In figure 1 we present ε = 3;
n = 2, 4; k = 1/

√
2 for the former case and ε = 5; n = 2, 5; k = i/

√
2 for the latter. The

second type is more similar to the tan2 solution for ε = 1 to be discussed in the next section.
These solution are real either for v ∈ (−∞, 0] or v ∈ [0,∞). In figure 1 the former case is
illustrated by ε = 3; n = 2, 4; k = i/

√
2 and the latter by ε = 5; n = 2, 5; k = 1/

√
2.

3.4. Analogues of the tan2 solution

Next we consider the limit m → 0. Keeping the parameterization (3.17) we make the further
convenient choice k = ±1/

√
2, similarly as in the previous section, which amounts now to

the boundary condition κ = 1. Then the Appell hypergeometric function F1 reduces to the
Gauss hypergeometric function 2F1 defined as

2F1(α;β; γ ; x) :=
∞∑

n=0

(α)n(β)n

n!(γ )n
xn = F1(α;β/2, β/2; γ ; x; x). (3.22)
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(a)

(b) (d)

(c)

Figure 2. (x − ct) as a function of v for ε = 1, 3, 5, 11 for some particular branches and m = 0.

Using furthermore the identity

2F1(α; 2β; 2α + β; x) = αx−αBx(α, 1 − 2β), (3.23)

where Bz(α, β) is the incomplete beta function

Bz(α, β) =
∫ z

0
tα−1(1 − t)β−1, (3.24)

we obtain the simpler expression

x − 4t = exp

(
iπ(4n + ε − 1)

2(1 + ε)

)( ε

ε + 1

) 1
ε+1

B−v

(
ε

ε + 1
,
ε − 1

ε + 1

)
. (3.25)

For ε = 1 (3.25) reduces further to x − 4t = √
2 arctan(±√

v), which may be solved
for v, such that we obtain u(x, t) = tan2[(x − 4t)/

√
2] as a solution for the standard KdV

equation. For generic values of ε we depict (3.25) for various values of the parameters in
figure 2. For ε = 1 we perceive the real solution x − 4t = √

2 arctan(±√
v) in panel (a).

A qualitatively similar type of solution is obtained for instance for some branches for ε = 5
as is seen also in panel (a). Panel (b) confirms that for v > 0 this solution is real. (The
solid line is on top of the dashed line) Interesting qualitatively different types of solutions
are obtained for instance for some branches for ε = 3, 11. We observe from panel (c) that
these solutions are very reminiscent of the one-soliton solution, to be discussed in the next
section, albeit with the fundamental difference that they are not vanishing asymptotically for
large (x − ct). This is seen simply by using the property B1(α, β) = �(α)�(β)/�(α + β)

of the incomplete beta function. For v → 1 we obtain in (3.25) the definite values
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(a)

(b)

(c)

(d)

Figure 3. (x − ct) as a function of v for ε = 1, 5 and ε = 3, 11 with k = ±1/
√

2 and k = ±i/
√

2,
respectively, for some particular branches with m = 1.

exp
( iπ(4n+ε−1)

2(1+ε)

)(
ε

ε+1

)1/(ε+1)
�

(
ε

ε+1

)
�

(
ε−1
ε+1

)/
�

(
2ε−1
ε+1

)
. This limit is finite for the parameter range

except for ε = 1, when limx→0 �(x) → ∞. In this case we obtain a purely complex one-
soliton solution as can also be seen clearly in panel (b). Having Galilean invariance for our
equations, we may also move this function as v → v + 1, such that the tails are located at
v = 0 rather than v = −1, which is a more familiar setting.

3.5. Analogues of the one-soliton solution

Next we take the limit m → 1 corresponding to the special case κ = 0, which implements
vanishing boundary conditions. Indeed, adopting the parameterization (3.17) the limit
m → 1 in (3.19) for ε = 1 yields the asymptotically vanishing single-soliton solution
u(x, t) = −2k2 sech2(kx − ωt). Taking this limit in (3.20) for generic values of ε gives

x − ct = e
iπ(4n+ε−1)

2(1+ε)

( ε

ε + 1

) 1
ε+1

(2k2)
1+ε
2−ε B− v

2k2

(
ε − 1

ε + 1
,

ε

ε + 1

)
. (3.26)

We depict this function for various values of the parameters in figure 3. The famous one-
soliton solution is clearly visible for ε = 1. In the other cases we obtain again two qualitatively
different types of real solutions. One type being real in the finite ranges v ∈ [−1/2k2, 0] and
v ∈ [0, 1/2k2] exemplified by ε = 5; n = 1, 4; k = 1/

√
2 and ε = 3; n = 2, 4; k = i/

√
2,

respectively. The other type is real in the ranges for v ∈ (−∞, 0] and v ∈ [0,∞), which
we illustrated in figure 3 by ε = 3; n = 1, 3; k = i/

√
2 and ε = 5; n = 2, 5; k = 1/

√
2,

respectively.
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4. Conclusions

Alternatively to [7], we proposed a new PT -symmetric complex deformed version of the
KdV equation. The suggested deformation allows for a simple non-Hermitian Hamiltonian
formulation involving a Hamiltonian density very reminiscent to the prototype PT -
symmetrically complex deformed quantum mechanical system (1.1). The model (3.1) is
Galilean invariant and three charges, related to the conservation of mass, momentum and
energy, together with their conservation laws, were constructed. We demonstrated that there
exist steady progressing wave solutions for these models and identified analogues to the
cnoidal and tan2 solution. However, we did not find asymptotically vanishing analogues to
the one-soliton solution.

Clearly there are many important questions left to be answered. It would be interesting to
establish that there exist three and only three charges for the proposed deformation. Besides
solving the equations more explicitly it will be natural to seek for solutions on some rays in
the complex plane. It will be straightforward to extend these considerations to the modified
KdV and the generalized KdV equations. We shall leave these issues for future investigations
[22].
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